
Bilkent University
Department of Computer Engineering

Senior Design Project

T2333
Stock Vision

Final Report

21802713 Remzi Tepe remzi.tepe@ug.bilkent.edu.tr
21802228 Ekrem Polat ekrem.polat@ug.bilkent.edu.tr

21703049 Abdulkadir Erol abdulkadir.erol@ug.bilkent.edu.tr
21802520 Mert Atakan Onrat atakan.onrat@ug.bilkent.edu.tr
21702301 Nihat Bartu Serttaş bartu.serttas@ug.bilkent.edu.tr

Supervisor: Shervin Rahimzadeh Arashloo
Course Instructors: Erhan Dolak and Tağmaç Topal

19.05.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the requirements of the Senior

Design Project course CS491/2.



Final Report 3

1 Introduction 3

1.1 Purpose of the System 3

1.2 Definitions, Acronyms, and Abbreviations 4

1.3 Overview 4

2 Requirements Details 5

2.1 Functional Requirements 5

2.2 Non-functional Requirements 5

2.2.1 Accessibility 5

2.2.2 Availability 6

2.2.3 Performance 6

2.2.4 Reliability 6

2.2.5 Scalability 6

2.2.6 Security 6

2.2.7 Usability 6

2.2.8 Portability 7

2.2.9 Marketability 7

2.2.10 Extendibility 7

2.2.11 Maintainability 7

2.2.12 Flexibility 7

2.2.13 Modularity 7

2.2.14 Aesthetics 7

3 Final Architecture and Design Details 8

3.1 Overview 8

3.2 Subsystem Composition 9

3.3 Hardware/Software Mapping 9

3.4 Persistent Data Management 10

3.5 Access Control and Security 10

3.6 Global Software Control 11

3.7 Boundary Conditions 11

3.7.1 Initialization 11

3.7.2 Termination 11

3.7.3 Failure 12

3.8 Customer Subsystem 12

3.8.1 Customer UI Subsystem 12

3.8.2 User Subsystem 13

1



3.9 Admin Subsystem 14

3.9.1 Admin UI Subsystem 14

3.9.2 Admin Subsystem 15

3.10 Server Subsystem 16

3.10.1 Remote Server Layer 16

3.10.2 Data Storage Layer 16

4 Development/Implementation Details 16

5 Test Cases and Results 17

6 Maintenance Plans and Details 44

6.1 Flutter 44

6.2 Django 44

6.3 SDKs 44

6.4 API 44

6.5 Machine Learning Models 44

6.6 Chart Pattern Algorithms 45

6.7 Coins 45

6.8 Language 45

6.9 Bug Fixes 45

7 Other Project Elements 45

7.1 Consideration of Various Factors in Engineering Design 45

7.2. Ethics and Professional Responsibilities 46

7.3 Teamwork Details 47

7.4.1 Contributing and functioning effectively on team 47

7.4.2 Helping create a collaborative and inclusive environment 47

7.4.3 Taking the lead role and sharing leadership on the team 47

7.4.4 Meeting Objectives 47

8 Conclusion and Future Work 48

9 Glossary 49

References 50

2



Final Report
Project Short-Name: Stock Vision

1 Introduction

The cryptocurrency market has evolved significantly over the last decade. As of 2022,

the market cap has reached over $1.00 trillion, and over 300+ million people use/own

cryptocurrencies [1]. This huge demand led to much research regarding the stock market for

users to learn about. Even so, reaching for trustworthy information about the market and

analyzing the stock market have always been struggles for users. Many so-called economists

have emerged and tried to direct people with some controversial or even incorrect concepts

about the market. It takes a lot of time for beginners to choose which cryptocurrencies to use

and how to invest, while limitless ideas exist. Moreover, many cryptocurrencies arise and fail

due to a lack of security, weak teams, scamming, etc. This thriving industry has become very

risky, especially for beginners who need to learn what and how to invest their money.

Therefore, in the project, we aim to design a hands-on experience simulation app where

users can invest the application's fake currency (given in any real currency such as Bitcoin or

even dollars) and get AI-based results and tips in real-time. This way, users can learn the

fundamentals of investing in cryptocurrencies without losing money or relying on anyone.

This final report describes requirements, final architecture, design details,

development/implementation details, test cases and results, maintenance plan and details,

other project elements, and conclusion and future work.

1.1 Purpose of the System

Stock Vision is a mobile application that provides an educational environment for people

interested in the stock market. The application will allow individuals to buy/sell coins with

StockV’s currency, which enables them to invest comfortably without risking any money loss.

The most important purpose of the application is to give investment tips to the user with the

3



help of machine learning algorithms by reading the graphic values of the coin selected by the

user. The user can invest by considering these tips that the application gives him, and more

importantly, by learning these tips, he can have a better idea of   how to invest better. Moreover,

he can make profitable investments by putting these tips learned in practice into real life. In this

regard, to increase the probability of giving correct tips to users, Stock Vision will collect

feedback from the users, which will be used to check the corresponding algorithm’s correctness.

1.2 Definitions, Acronyms, and Abbreviations

V-Tip: The expected behavior of the coin given by the StockVision as a hint when the coin's

values matched at least %75 of the training dataset.

V-Prob: The expected probability of realization of a given V-Tip as a percentage.

V-Plans: The available premium plans for the Stock Vision.

1.3 Overview

Stock Vision is a mobile application that works in iOS and Android. It provides a real-time

stock/ETF simulation using past stock/ETF data. It allows users to invest using our application’s

fake currency and get real-time results/tips about their investments. At first, the user will sign

up, if not signed yet, and then log in to the system. After logging in, users can see and search

real-time stock/ETF values. Stock market graphs of each cryptocurrency can be seen daily,

weekly, monthly, or even yearly. Users can go through these cryptocurrencies and see the data

provided and read the tips given by our AI algorithms. More importantly, each user will start

with a specific amount of fake currency and be able to use this fake currency to invest in

stocks/ETFs. When users make investments, they can see tips from our AI on investing their

money, the probability of values increasing/decreasing, and receive real-time results when

gaining or losing money. These tips allow users to practice their graph reading abilities and see

the results in real-time. If the users run out of the application’s fake currency, they can start

over with the initial fake currency.

4



Furthermore, Stock Vision has graph-reading algorithms using reliable stock graph

patterns and providing a real-time tipping mechanism for the graphs. Analyzing stock values will

be done with image processing, and a wide range of datasets of stock graph patterns will be

used. Moreover, users' investments will be stored in our database, and the user data will be

analyzed. Some tips and results will be provided after these analyses.

2 Requirements Details

2.1 Functional Requirements

● Users must log in or register to the system before using the application.

● The system should define some fake coins to users for investing in the market.

● The system must advise users by evaluating users’ investments/transactions with AI.

● The system must give tips to users by evaluating the previous data about the currencies.

● The system must have two types of accounts: Free and Premium. Premium users can get more

detailed tips and fake coins to invest in the market.

● The system must show users extended graphs related to predictions on currencies.

● The system must save all information about the currencies’ progress, predictions, and graphs in

the database so other users can benefit from it.

● Users can save their favorite currency pairs to see their progress.

● Users can change/delete their profile and related data in the database.

2.2 Non-functional Requirements

2.2.1 Accessibility

● Android Jelly Bean, v16, 4.1, and iOS 8 or newer versions are required for users to use

the system.

5



2.2.2 Availability

● The application will use past and present cryptocurrency data from reliable stock market

sites. Unless these websites are down (it is very rare), the application can be used

properly.

2.2.3 Performance

● Displaying the home screen to users should be under 5 seconds.

● Updating users' data on investments should take under 1 second.

2.2.4 Reliability

● Authentication is required to join the system.

● A server crash or power outage should not result in data loss.

2.2.5 Scalability

● The servers can be extended easily.

● Many other features can be added easily without losing performance.

2.2.6 Security

● A unique sign-up/log-in process will be done.

● The data will be put in reliable servers like Firebase, so data loss will not be encountered.

2.2.7 Usability

● The GUI of the application will be very user-friendly since the users are not expected to

be an expert in using mobile applications.

● Any problems encountered by users can be reported so that sustainability can be

managed and the bugs can be fixed.

6



2.2.8 Portability

● If the newer Android or IOS is installed, the system should not cause any errors.

2.2.9 Marketability

● The application can satisfy the users’ needs since there is a high demand on the stock

market.

● A marketing strategy on social media will be applied to the target audience.

2.2.10 Extendibility

● The application is scalable and can extend to new features without problems.

2.2.11 Maintainability

● The maintenance of the app can be done easily since the code, and the documentation

is very-well designed.

2.2.12 Flexibility

● It’s a cross-platform application: Android and IOS users can use it.

● In the application, Dart/Flutter is used, which is very trendy and follows the newest

technologies.

2.2.13 Modularity

● The application consists of reusable components that do not overlap on top of each

other.

2.2.14 Aesthetics

● Throughout the application, GUI is user-friendly and very easy to use.

● The visual design of the application is also very futuristic.

7



3 Final Architecture and Design Details

3.1 Overview

The final architecture for the application follows a 3-tier architecture approach

consisting of a presentation layer, business logic layer, and data storage layer.

The presentation layer, or the front-end component of the application, is developed

using the Flutter framework. It will be responsible for providing a user-friendly interface for the

application, allowing users to simulate cryptocurrency investments using the app's virtual fake

currency. The front-end component will communicate with the business logic layer through

RESTful APIs provided by the back-end component.

The business logic layer or the back-end component of the application is developed

using the Django REST framework. It will be responsible for handling the application's business

logic, including the AI-based algorithms that provide users with real-time investment advice and

tips. The back-end component will also provide the necessary APIs for communication between

the front-end and data storage layers. In addition, the back-end component will handle the

persistent data storage using the PostgreSQL database.

The data storage layer is responsible for storing all the data generated by the application

and the dataset for AI-based algorithms. In this project, AWS cloud storage will be utilized to

provide scalable and reliable storage options. PostgreSQL will be used as the relational database

management system to store and retrieve application data.

Overall, this 3-tier architecture approach aims to provide a modular, scalable, and

maintainable software architecture for the application. Using modern technologies and

frameworks such as Flutter, Django REST framework, PostgreSQL, and AI-based algorithms

provides a cutting-edge and user-friendly experience for users to learn about cryptocurrency

investments.

The next section aims to provide a clear understanding of the StockVision app's

architecture and logic through the following topics: subsystem decomposition,

8



hardware/software mapping, persistent data management, access control, software control,

and boundary conditions. Each topic will be explained in detail to provide a comprehensive

overview of the application structure.

3.2 Subsystem Composition

Figure 1: Subsystem Composition

3.3 Hardware/Software Mapping

As can be seen, the StockVision app relies on 3-tier architecture. So that it can easily be

scalable, modifiable, and logical, each tier requires different hardware and software

components to support its functionality. The presentation layer relies on mobile devices to run

the Flutter framework and the operating system (e.g., iOS, Android) that supports it. The

business logic layer requires servers or cloud infrastructure to run the Django REST framework,

the Python scripts for AI-based investment logic, and the operating system (e.g., Linux,

Windows Server) that supports them. Finally, the data storage layer requires servers or cloud

infrastructure to run the PostgreSQL database management system, the operating system (e.g.,

Linux, Windows Server), and AWS cloud storage for scalable and reliable storage options.

9



Figure 2: 3-Tier Layer Structure

3.4 Persistent Data Management

For StockVision, users’ personal information, their balance, and the data about AI

models are persistent data.

For StockVision, a persistent data management system is crucial to keep track of user

information, transaction history, and AI training data. To accomplish this, we chose to use

PostgreSQL as our database management system and Amazon Web Services (AWS) as our cloud

computing platform. We opted for PostgreSQL due to its reliability, scalability, and robust

features such as indexing, data integrity checks, and transactional support. In AWS, we utilized

the Relational Database Service (RDS) to deploy and manage our PostgreSQL instance, ensuring

high availability and scalability. With this setup, we can easily store and retrieve user data,

transaction history, and AI training data, allowing us to improve our AI model's performance

continuously.

3.5 Access Control and Security

In StockVision, users have a Free Trial and Premium. Both types of users’ sign-in

methods are the same: only entering a name, mail, and password. All the passwords are hashed

and secured in the server in case of leaks. Moreover, if users want to buy premium packages,

10



they should enter their credit card information and buy the product. Also, their credit card

information will not be saved for security reasons.

So, since their password is secured with hashing, they will be safe against any secured

control and monitor user data, and the database will be used actively.

3.6 Global Software Control

In StockVision, event-driven programming will make our app more responsive and

interactive. By triggering actions in response to user input or system notifications, we can

provide a more intuitive and user-friendly experience. For example, when a user wants to learn

the approximate value of Bitcoin in two months, they can find it by clicking on the coin’s details.

Also, multithreading will be used to improve the performance of our app. We can handle

multiple requests by running multiple threads since the cryptocurrency data is constantly

coming, and we need to maintain its durability and stability. Otherwise, it is going to be a

problem.

3.7 Boundary Conditions

3.7.1 Initialization

The app must be installed and launched successfully on a compatible device. The user

must have a stable internet connection to access real-time data and features. The user must

have a valid account with the app, either created by signing up or logging in.

3.7.2 Termination

The user can close the app or log out of their account easily without losing data. The app

can properly save any changes or data the user makes before closing or logging out. The app

should not cause any errors or crashes during the termination process.

11



3.7.3 Failure

If any bug happens while the user interacts with the application, for example, while

trying to see the prediction on Bitcoin in 2024, the user should be able to email the support if

the app crashes.

When there is no internet connection, users should be notified to connect to the

Internet immediately to get the current data and predictions.

If there is a technical problem with AI models, all users should be notified by email to

wait until the problem is solved.

If there is a danger of losing data on the server side, all users should also be notified to

avoid any conflict and data loss in the process.

3.8 Customer Subsystem

3.8.1 Customer UI Subsystem

Figure 3: UI Subsystem of a Customer

ControllerUI: Controller of the user interface of the user. Controls the user input and manages

the responses of the user.

12



SignupUI: Signup User Interface

LoginUI: Login User Interface

HomeUI: Homepage User Interface where users can see the coins with their graphs, current

values, and percentage increase/decrease. Moreover, users can access some other pages, such

as the coin page, profile page, premium page, etc.

PremiumUI: Premium User Interface where users can upgrade their service and make the

payment on the page.

CoinUI: Coin User Interface where users can see the details of a coin's current value and

percentage increase/decrease from here. Daily, weekly, monthly, and yearly changes can be

seen.

TipsUI: Tips User Interface where users can access some tips (more tips with premium options)

provided through our algorithms.

ProfileUI: Profile User Interface where users can see their profile information and update some

changes.

3.8.2 User Subsystem

Figure 4: User Subsystem of a Customer

13



Server_RequestHandler: Creates responses when requests arrive in the system and control the

UI system with service requirements.

UI_RequestHandler: Sends information to the server and manages responses that come from

UI.

ProfileManager: Manages profile information and updates when required.

AuthenticationManager: Controls the safe connection to the system.

PaymentManager: Controls the payment for becoming premium users.

CoinManager: Controls the coins and their tips in the system.

3.9 Admin Subsystem

3.9.1 Admin UI Subsystem

Figure 5: UI Subsystem of an Admin

ControllerUI_Admin: Controller of the user interface of the admin. Controls the user input and

manages the responses of the admin.

LoginUI_Admin: Login User Interface

14



HomeUI_Admin: Homepage User Interface where the admin can add or remove the coins with

their graphs, current values, and percentage increase/decrease.

PremiumUI_Admin: Premium User Interface where the admin can update and manage

premium users and their service.

CoinUI_Admin: Coin User Interface where the admin can update and manage coins and their

tips according to being a premium or a regular user.

3.9.2 Admin Subsystem

Figure 6: User Subsystem of an Admin

Server_RequestHandler_Admin: Creates responses when requests arrive in the system and

control the UI system with service requirements.

UI_RequestHandler_Admin: Sends information to the server and manages responses that come

from UI.

AuthenticationManager_Admin: Controls the safe connection to the system.

PaymentManager_Admin: Controls the payment for becoming premium users in case of a

problem in the payment and can report to the user.

15



CoinManager_Admin: Controls the coins (additionally, adding and removing can be made here)

and their tips in the system.

3.10 Server Subsystem

The server subsystem has two important layers: The remote server layer and the data

storage layer.

3.10.1 Remote Server Layer

Remote Server Layer handles the HTTPS requests using REST API to our server (Django)

with providing security. It is used for authentication. For the coins and their information, we use

Binance API to get the details of the coins.

3.10.2 Data Storage Layer

Data required to be used later is stored in our data storage. PostgreSQL is used for the

relational database management system to store and retrieve application data. Moreover, it is

used for user information. Local storage is used for the coin logos to receive data faster and

improve performance.

4 Development/Implementation Details

● Dart: We have used the Flutter framework to develop our application that uses Dart language.

We have used a variety of Dart packages, such as convert, material, async, HTTP, kChart, etc.,

while implementing the application.

● Python: We have used the Django framework to develop the backend part of our application

that uses Python language. In addition to Django packages, we have used several Python

packages such as requests, numpy, pandas, matplot.lib, scipy.signal, io, base64, etc., while

developing the backend.

● PostgreSQL: Our application uses PostgreSQL as a relational database management system.

16



● AWS: We have deployed our database to Amazon Relational Database Systems (RDS) to access

the same data as a team.

● API Usage: We have used Binance API to fetch coin information such as sell price, buy price,

volume, daily change, etc. Moreover, we have used Rest API to make communication between

the front-end, i.e., Flutter application, and the back-end, i.e., Django application.

● Machine Learning: Our application uses each coin’s 10 years' historical price values as a dataset.

We have implemented the ARIMA model to train our datasets. After training our datasets, we

displayed the predicted results in the application.

● Artificial Intelligence: We have used different Artificial Intelligence algorithms implemented in

Python to capture chart patterns in the given coin’s graph, such as Rectangle, Triangle, Head &

Shoulders, and Round Bottom.

● Git / Github: We have used Git as a version control system. Also, we have used Github to share

the code with the team. We can open issues, assign teammates to the issues, and open/close

pull requests using Github.

5 Test Cases and Results

In the Test Cases section, there are 61 test cases designed for StockVision. When assigning a

priority/severity level, we have used the following criteria:

Critical: The tested functionality has a critical role in the application and it’s a must.

Major: The tested functionality prevents the users from using the application correctly.

Minor: The tested functionality has no major effects.

Test ID TC#1

Test Type/Category Functional, Safety

Title Check if the users successfully sign up

Procedure of testing steps 1. Check whether the email is not already used
2. Check whether the email is valid
3. Check whether the password is valid

17



Expected results Already used emails should not be selected. The user should
use a unique, valid email and a valid password.

Priority/Severity Critical

Date Tested and Test Result 01.04.2023 - Successful

Test ID TC#2

Test Type/Category Functional, Safety

Title Check if the users successfully log in

Procedure of testing steps 1. Check whether the email is already in the database
2. Check whether the password matches the email

Expected results Not signed-up emails should not be written. The user should
write the matched password with the email.

Priority/Severity Critical

Date Tested and Test Result 01.04.2023 - Successful

Test ID TC#3

Test Type/Category Functional, Safety

Title Check if the forgotten password process is working

Procedure of testing steps 1. Check whether the forgotten password button sends a
valid link to the responding email

2. Check whether the link in the email directs users to
change their password

3. Check whether the new password chosen by the user is
valid

4. Check whether the new password chosen by the user is
updated with the old one

Expected results The forgotten password was updated correctly with the new
password.

Priority/Severity Major

18



Date Tested and Test Result 01.04.2023 - Successful

Test ID TC#4

Test Type/Category Functional, Safety

Title Check whether the profile of the users are matched and can be
updated successfully

Procedure of testing steps 1. Check whether users can see their profile with the
correct information and update it successfully.

Expected results Users should be able to see their profile with their own
information and can update their data correctly.

Priority/Severity Major

Date Tested and Test Result 01.04.2023 - Successful

Test ID TC#5

Test Type/Category Functional, Integration

Title Check whether the coins are retrieved accurately

Procedure of testing steps 1. Check whether the coins are retrieved with the correct
logo, information, and data.

Expected results All the coins retrieved with APIs should be correctly seen on
the homepage.

Priority/Severity Critical

Date Tested and Test Result 01.04.2023 - Successful

Test ID TC#6

Test Type/Category Functional, Integration

Title Check whether the coins are updated in real-time

19



Procedure of testing steps 1. Check whether the coins are updated with the correct
data.

Expected results All the coins should be updated with their corresponding data
in real-time on the homepage.

Priority/Severity Critical

Date Tested and Test Result 01.04.2023 - Successful

Test ID TC#7

Test Type/Category Functional, Usability

Title Check whether users can add a coin to their favorite coins.

Procedure of testing steps 1. Check whether the add to the favorite button of a coin
is working and adding a coin to favorite coins

Expected results Favourite coins should be added to the favorite coin list
correctly with the add to the favorite button.

Priority/Severity Minor

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#8

Test Type/Category Functional, Usability

Title Check whether users can remove a coin to their favorite coins.

Procedure of testing steps 1. Check whether the add to the favorite button of a coin
is working and adding a coin to favorite coins

Expected results Selected coins should be removed from the favorite coin list
correctly with the remove from the favorite button.

Priority/Severity Minor

Date Tested and Test Result 05.04.2023 - Successful

20



Test ID TC#9

Test Type/Category Functional, Usability

Title Check whether favorite coins can be listed on the homepage

Procedure of testing steps 1. Check whether favorite coins can be listed on the
homepage correctly with its button

Expected results Favourite coins should be listed with the list button on the
homepage.

Priority/Severity Minor

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#10

Test Type/Category Functional, Integration

Title Check whether each coin's details are real-time and accurate

Procedure of testing steps 1. Check whether each coin's details are updated in
real-time with the correct data.

2. More importantly, the graphs of each coin should be
retrieved from APIs fast and accurately.

Expected results Each coin details retrieved with APIs should be fast and
correctly seen on the coin details page.

Priority/Severity Critical

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#11

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their 15-min graphs.

Procedure of testing steps 1. Check 15-min time range of each coin's button is

21



working correctly.

Expected results 15-min time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#12

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their 1-hour graphs.

Procedure of testing steps 1. Check 1-hour time range of each coin's button is
working correctly.

Expected results 1-hour time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#13

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their 4-hours graphs.

Procedure of testing steps 1. Check 4-hour time range of each coin's button is
working correctly.

Expected results 4-hour time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

22



Test ID TC#14

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their daily graphs.

Procedure of testing steps 1. Check daily time range of each coin's button is working
correctly.

Expected results Daily time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#15

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their weekly graphs.

Procedure of testing steps 1. Check weekly time range of each coin's button is
working correctly.

Expected results Weekly time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#16

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their monthly graphs.

23



Procedure of testing steps 1. Check monthly time range of each coin's button is
working correctly.

Expected results Monthly time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#17

Test Type/Category Functional, Usability

Title Check whether users can search and browse through each coin
with their yearly graphs.

Procedure of testing steps 1. Check yearly time range of each coin's button is
working correctly.

Expected results Yearly time range of each coin retrieved with APIs should be
fast and correctly seen on the coin details page.

Priority/Severity Major

Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#18

Test Type/Category Functional, Integration

Title Check whether the coin’s buy and sell prices are retrieved
from the APIs accurately

Procedure of testing steps 1. Check whether the sell prices and buy prices are
displayed on the coin details page.

2. Check whether these prices match the data of Binance
API.

Expected results Buying and selling prices should be displayed correctly.

Priority/Severity Major

24



Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#19

Test Type/Category Functional, Integration

Title Check whether the coin’s buy and sell prices are updated from
the APIs in real-time accurately

Procedure of testing steps 1. Check whether the sell prices and buy prices are
displayed and updated in real-time on the coin details
page.

2. Check whether these prices match the data of Binance
API.

Expected results Buying and selling prices should be updated correctly.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#20

Test Type/Category Functional, Security

Title Check whether users cannot buy the coin after 2 minutes
expires.

Procedure of testing steps 1. Check whether the user clicks can buy coin after 2
minutes expiration time.

Expected results After 2 minutes, the user should get a “Time is up!” warning
pop-up and be directed to the coin page.

Priority/Severity Minor

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#21

25



Test Type/Category Functional, Usability

Title Check whether the user cannot enter the amount value that
its corresponding price exceeds their balance in their wallet
while buying the coin.

Procedure of testing steps 1. Check whether the users can click on the buy button
after the amount value that its corresponding price
exceeds their balance in their wallet.

Expected results If the amount value that its corresponding price exceeds their
balance, a warning should be displayed, and buying operation
should not be completed.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#22

Test Type/Category Functional, Usability

Title Check whether the users cannot enter the price value that
exceeds their balance in their wallet while buying the coin.

Procedure of testing steps 1. Check whether the users can click on the buy button
after the price value exceeds their balance in their
wallet

Expected results If the price value exceeds their balance in their wallet, a
warning should be displayed, and buying operation should not
be completed.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#23

Test Type/Category Functional, Usability

Title Check whether users cannot sell the coin after 2 minutes

26



expires.

Procedure of testing steps 1. Check whether the user clicks can sell coins after 2
minutes expiration time.

Expected results After 2 minutes, the user should get a “Time is up!” warning
pop-up and be directed to the coin page.

Priority/Severity Minor

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#24

Test Type/Category Functional, Usability

Title Check whether the user cannot enter the amount value that
its corresponding price exceeds their balance in their wallet
while selling the coin.

Procedure of testing steps 2. Check whether the users can click on the sell button
after the amount value that its corresponding price
exceeds their balance in their wallet.

Expected results If the amount value that its corresponding price exceeds its
balance, a warning should be displayed, and the selling
operation should not be completed.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#25

Test Type/Category Functional, Usability

Title Check whether the users cannot enter the price value that
exceeds their balance in their wallet while selling the coin.

Procedure of testing steps 2. Check whether the users can click on the sell button
after the price value exceeds their balance in their
wallet

27



Expected results If the price value exceeds their balance in their wallet, a
warning should be displayed, and the selling operation should
not be completed.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#26

Test Type/Category Functional, Usability

Title Check whether the users can buy coins with their balance.

Procedure of testing steps 1. Check whether the users can buy a coin with their
balance.

2. Check whether the balance of the user is updated after
the operation.

3. Check whether the wallet of the user is updated after
the operation.

Expected results If the user has the amount of money while buying, the coin
can be bought from the user, and the balance and wallet
should be updated accordingly.

Priority/Severity Critical

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#27

Test Type/Category Functional, Usability

Title Check whether the users can sell coins with their balance.

Procedure of testing steps 1. Check whether the users can sell a coin with their
balance.

2. Check whether the balance of the user is updated after
the operation.

3. Check whether the wallet of the user is updated after
the operation.

28



Expected results If the user has the amount of money while selling, the coin can
be bought from the user, and the balance and wallet should be
updated accordingly.

Priority/Severity Critical

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#28

Test Type/Category Functional, Usability

Title Check whether the users view their assets in their wallet

Procedure of testing steps 1. Check whether the user can view their assets in their
wallet

2. Check whether the assets are updated in real-time

Expected results Wallet should be updated correctly and seen by the users in
the wallet page.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#29

Test Type/Category Functional, Usability

Title Check whether the users view their gains and losses rate in
their wallet page

Procedure of testing steps 1. Check whether the user can view the gains and losses
of their assets in their wallet

2. Check whether the gains and the losses of assets are
updated in real-time

Expected results Wallet should be updated correctly and seen from the users in
the wallet page.

Priority/Severity Major

29



Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#30

Test Type/Category Functional, Usability

Title Check whether transactions are working properly.

Procedure of testing steps 1. Check whether the transactions are updated after each
buys and sells operation.

2. Check whether the transactions give responses
appropriately.

Expected results Transactions should be working correctly after each buy and
sell operation. If the buying or selling operations are not
applicable, transactions should not be changed.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#31

Test Type/Category Functional, Usability

Title Check whether transactions can be seen from the transaction
list.

Procedure of testing steps 1. Check whether the transactions are added to the
transaction list according to their corresponding order.

2. Check whether the transaction list can be seen from
the transaction list page.

Expected results Transactions should be seen correctly so that each user can
see previous transactions in the transaction list.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

30



Test ID TC#32

Test Type/Category Functional, Usability

Title Check whether the user can insert line to the coins graph in
the coin details page.

Procedure of testing steps 1. Check whether the insert line button adds a line to the
graph on the coin details page if the line is not already
on the graph.

Expected results Line should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 20.04.2023 - Successful

Test ID TC#33

Test Type/Category Functional, Usability

Title Check whether the user can remove the line from the coins
graph in the coin details page.

Procedure of testing steps 1. Check whether the remove line button removes a line
from the graph on the coin details page if the line is on
the graph.

Expected results Line should be removed from the graph.

Priority/Severity Minor

Date Tested and Test Result 20.04.2023 - Successful

Test ID TC#34

Test Type/Category Functional, Usability

Title Check whether the user can view the moving average prices
on the graph on the coin details page.

Procedure of testing steps 1. Check whether the MA button views the moving

31



average prices on the graph in the coin details page if
moving average prices is not already on the graph.

Expected results Moving average prices should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#35

Test Type/Category Functional, Usability

Title Check whether the user can view the Bollinger Bands indicator
on the graph on the coin details page.

Procedure of testing steps 1. Check whether the Boll button views the Bollinger
Bands indicator on the graph in the coin details page if
the Bollinger Bands indicator is not already on the
graph.

Expected results Bollinger Bands indicator should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#36

Test Type/Category Functional, Usability

Title Check whether the user can view the Moving Average
Convergence Divergence indicator on the graph on the coin
details page.

Procedure of testing steps 1. Check whether the MACD button views the Moving
Average Convergence Divergence indicator on the
graph in the coin details page if the Moving Average
Convergence Divergence indicator is not already on the
graph.

Expected results Moving Average Convergence Divergence indicator should be

32



visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#37

Test Type/Category Functional, Usability

Title Check whether the user can view the KDJ indicator on the
graph on the coin details page.

Procedure of testing steps 1. Check whether the KDJ button views the KDJ indicator
on the graph in the coin details page if the KDJ
indicator is not already on the graph.

Expected results KDJ indicator should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#38

Test Type/Category Functional, Usability

Title Check whether the user can view the Relative Strength Index
indicator on the graph on the coin details page.

Procedure of testing steps 1. Check whether the RSI button views the RSI indicator
on the graph in the coin details page if the RSI
indicator is not already on the graph.

Expected results RSI indicator should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

33



Test ID TC#39

Test Type/Category Functional, Usability

Title Check whether the user can view the William
Overbought/Oversold Index indicator on the graph on the coin
details page.

Procedure of testing steps 1. Check whether the WR button views the WR indicator
on the graph in the coin details page if the WR
indicator is not already on the graph.

Expected results WR indicator should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#40

Test Type/Category Functional, Usability

Title Check whether the user can remove the secondary state on
the graph on the coin details page.

Procedure of testing steps 1. Check whether the Remove Secondary State button
removes the RSS on the graph in the coin details page
if the RSS indicator is already on the graph.

Expected results RSS indicator should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#41

Test Type/Category Functional, Usability

Title Check whether the user can hide volume from the graph on
the coin details page.

34



Procedure of testing steps 1. Check whether the Hide Volume button hides the
volume on the graph in the coin details page if the
volume is already on the graph.

Expected results Volume should be hidden from the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#42

Test Type/Category Functional, Usability

Title Check whether the user can show volume on the graph on the
coin details page.

Procedure of testing steps 2. Check whether the Show Volume button shows the
volume on the graph in the coin details page if the
volume is not already on the graph.

Expected results Volume should be visible on the graph.

Priority/Severity Minor

Date Tested and Test Result 25.04.2023 - Successful

Test ID TC#43

Test Type/Category Functional, Usability

Title Check whether the user clicks on the chart patterns, list of the
patterns is displayed on the screen

Procedure of testing steps 1. Check whether the chart pattern page is displayed
when see chart patterns button is clicked.

2. Check whether captured chart patterns’ buttons are
enabled

3. Check whether non-captured chart patterns’ buttons
are disabled.

Expected results When see chart patterns button is clicked, enabled and

35



disabled chart patterns are seen according to our AI
algorithms.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#44

Test Type/Category Functional, Integration

Title Check whether the user can view captured Rectangle Patterns
detected by our AI algorithm if the corresponding button is
enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#45

Test Type/Category Functional, Integration

Title Check whether the user can view captured Head & Shoulders
Patterns detected by our AI algorithm if the corresponding
button is enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

36



Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#46

Test Type/Category Functional, Integration

Title Check whether the user can view captured Triples Patterns
detected by our AI algorithm if the corresponding button is
enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#47

Test Type/Category Functional, Integration

Title Check whether the user can view captured Wedge Patterns
detected by our AI algorithm if the corresponding button is
enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

37



Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#48

Test Type/Category Functional, Integration

Title Check whether the user can view captured Triangle Patterns
detected by our AI algorithm if the corresponding button is
enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#49

Test Type/Category Functional, Integration

Title Check whether the user can view captured Support &
Resistance Patterns detected by our AI algorithm if the
corresponding button is enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

38



Test ID TC#50

Test Type/Category Functional, Integration

Title Check whether the user can view captured Rounding Bottom
Patterns detected by our AI algorithm if the corresponding
button is enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#51

Test Type/Category Functional, Integration

Title Check whether the user can view captured Flag Patterns
detected by our AI algorithm if the corresponding button is
enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#52

39



Test Type/Category Functional, Integration

Title Check whether the user can view captured Double Patterns
detected by our AI algorithm if the corresponding button is
enabled.

Procedure of testing steps 1. Check captured patterns in the See Chart Patterns.
2. Check whether the pattern button is enabled if our AI

algorithm detects it.
3. Check whether the captured patterns can be viewed.

Expected results Captured patterns should be displayed if our AI algorithm
catches the pattern.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#53

Test Type/Category Functional, Integration

Title Check whether the prediction is made properly.

Procedure of testing steps 1. Check the results of our ML algorithms
2. Check whether the result is appropriate

Expected results Prediction should be an accurate prediction so that the tips
we are giving to the user are working.

Priority/Severity Critical

Date Tested and Test Result 10.05.2023 - Successful

Test ID TC#54

Test Type/Category Functional, Usability

Title Check whether the predictions are displayed accurately.

Procedure of testing steps 1. Check the results of our ML algorithms
2. Compare it with the results of predictions and see

40



whether they are displayed properly.

Expected results Predictions should be accurate with their corresponding
graphs.

Priority/Severity Major

Date Tested and Test Result 10.05.2023 - Successful

Test ID TC#55

Test Type/Category Functional, Security

Title Check if the users successfully log out

Procedure of testing steps 1. Check whether the logout button is clicked
2. Check whether the user is logged out

Expected results The user should log out correctly after clicking the logout
button.

Priority/Severity Major

Date Tested and Test Result 10.04.2023 - Successful

Test ID TC#56

Test Type/Category Non-Functional, Integration

Title Check whether the server is connected to Binance API
correctly.

Procedure of testing steps 1. Check whether the settings of connecting Binance API
are correct

2. Check whether the connection is stable.
3. Check whether the retrieved data is accurate.

Expected results The connection should be made between the server and the
API, and it should be working accurately.

Priority/Severity Major

41



Date Tested and Test Result 05.04.2023 - Successful

Test ID TC#57

Test Type/Category Non-Functional, Performance

Title Check whether the coins are updated every 2 seconds.

Procedure of testing steps 1. Check whether the coins are updated in 2 seconds.

Expected results The coin data is retrieved from the APIs every 2 seconds.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#58

Test Type/Category Non-Functional, Performance

Title Check whether the buy prices are updated every 0.5 seconds.

Procedure of testing steps 1. Check whether the buy prices are updated every 0.5
seconds.

Expected results The buy price data is retrieved from the APIs every 0.5
seconds.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#59

Test Type/Category Non-Functional, Performance

Title Check whether the sell prices are updated every 0.5 seconds.

Procedure of testing steps 1. Check whether the sell prices are updated every 0.5
seconds.

42



Expected results The sell price data is retrieved from the APIs every 0.5
seconds.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#60

Test Type/Category Non-Functional, Performance

Title Check whether the user wallet is updated every 0.5 seconds.

Procedure of testing steps 1. Check whether the user's wallet is updated every 0.5
seconds.

Expected results The user wallet data is updated from the back-end every 0.5
seconds.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

Test ID TC#61

Test Type/Category Non-Functional, Performance

Title Check whether the save coins data are updated every 2
seconds.

Procedure of testing steps 1. Check whether saved coins are updated every 2
seconds.

Expected results The saved coins data is updated from the back-end every 2
seconds.

Priority/Severity Major

Date Tested and Test Result 01.05.2023 - Successful

43



6 Maintenance Plans and Details

Maintenance is a significant part of our project since it relies on the server.

6.1 Flutter

New upgrades on Flutter arrive, and the application should also be caught up with the new

upgrades. Flutter packages can also get updated depending on the developers, and using the last

version of it is very important due to UI or other related parts not being deprecated.

6.2 Django

Similar to Flutter, new upgrades on Django arrive, and the application should also be caught up

with the new upgrades. Django packages can get updated depending on the developers, and using the

last version of it is very important to implement backend features in the most efficient way.

6.3 SDKs

There are also some SDK updates that happen over time, and catching up with the SDKs is also

important.

6.4 API

As an API, public Binance API is used, and it is a well-known API for developers who are in the

stock market. Any upgrades should be followed through time so that not any errors occur throughout

the application.

6.5 Machine Learning Models

New machine learning models can be invented in Computer Science. To predict the coin prices

in the most proper way, new models can be integrated into the application.

44



6.6 Chart Pattern Algorithms

New chart patterns may arrive in the stock market. To provide the best experience to the users,

new patterns algorithms should be implemented in the application.

6.7 Coins

New coins may arrive in the stock market. To provide the best experience to the users, new

coins should be included in the application.

6.8 Language

In the application, everything is written in English, and it is not meant to be translated into

another language. However, if it’s requested, everything written in English could be translated into

another language as well.

6.9 Bug Fixes

Due to the nature of programming, bugs, and other issues can occur while the application is

used. Therefore, it is important to fix the issues so that it does not occur in the future.

7 Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

Stock Vision is a mobile application that provides an educational environment for people

interested in the stock market. The most important purpose of the application is to give

investment tips to the user with the help of ine learning algorithms by reading the graphic

values of the coin selected by the user. The aim of using machine learning algorithms is to

provide more concise and accurate results for the users. Users should have a deeper

understanding of analyzing the graphs.

45



Importance
Level

Effect

Cost 3 Application requires only developer cost. Therefore, cost does
not have an immense effect on our application.

Reliability 5 Reliability is the most important factor in our app because the
main purpose of the application is to provide reliable

information for the user.

Safety 3 Since we do not store very important data of users, there is
no data to be leaked. However, tips require come a certain

level of safety.

Efficiency 4 Efficiency is important because

Environmental

Considerations

0 There is nothing to consider due to environmental
considerations in our app.

Availability 4 Availability is important in our app because the stock market
is huge, and users should access our app easily.

Quality 4 Quality is important because our market is competitive, and
our application should be high quality to attract users.

7.2. Ethics and Professional Responsibilities

In the application, although we do not collect private data of our users, like addresses,

national IDs, etc., we collect emails and passwords, so we should be able to keep those data

private.

Moreover, it is crucial to be careful about the APIs, libraries, and other things because of

copyright issues. We used public Binance API and other free libraries so that we do not expect

to encounter any copyright issues.

Throughout the application, the well-being and rights of individuals, communities, and

the environment are prioritized. Moreover, there are a set of moral principles followed, such as

honesty, integrity, and respect for others. While implementing the project, ethics is embraced,

and professional responsibilities are fulfilled to create a trustworthy work environment. It was

46



crucial to build strong relationships with colleagues and clients and make a positive impact on

society as a whole.

7.3 Teamwork Details

7.4.1 Contributing and functioning effectively on team

WP# Work package title Leader Members involved
WP1 Project Specification Document Atakan Everyone
WP2 Analysis and Requirement

Report
Bartu Everyone

WP3 Back-end implementation Kadir Everyone
WP4 First Prototype Ekrem Everyone
WP5 Database Implementation Remzi Everyone
WP6 UI/UX Implementation Atakan Everyone
WP7 Second Prototype Ekrem Everyone
WP8 Final Implementation Kadir Everyone
WP9 Final Report Remzi Everyone

7.4.2 Helping create a collaborative and inclusive environment

We regularly hold meetings. Mostly it is weekly, but from time to time, we hold

meetings two times a week. This way, we can discuss all the details we need to do before our

implementations, reports, etc. This allows us to work more efficiently. We replace when there is

an urgency in one of our team members and help the ones who are in more help.

7.4.3 Taking the lead role and sharing leadership on the team

On every step of the application, we try to hold a different leader and work with him

efficiently. Each member is a responsible leader, and everyone dedicates himself to the projects

more efficiently this way. Additionally, everyone improves his leadership skills with the help of

this course, and this will be an important skill that we will use later on.

7.4.4 Meeting Objectives

In order to meet objectives as a team, deadlines are set at each step of development. Everyone

on the team tried to catch up with the deadlines, and in case of emergencies, other team members

47



tried to compensate and help other teammates for the team spirit. Google Meet is used for team

meetings, and these meetings are sent to Google Calendars for everyone. Google Docs is used for the

reports so that everyone can work in the same workspace and track each other. WhatsApp is used for

team communication instead of other communication channels like Slack, Gmail, etc., to have faster

communication rather than using a professional one. Due to team members’ schedules, some

deadlines and meetings are postponed without affecting the course deadlines.

8 Conclusion and Future Work

Stock Vision is a mobile application designed to provide users with a real-time stock/ETF

simulation using past stock/ETF data. It allows users to invest using our application’s fake currency and

get real-time results/tips about their investments. The application leverages advanced machine

learning algorithms and data analysis techniques to forecast the future trends of various stocks and

teaches users the fundamentals of stock/ETF predictions with hands-on experience simulation.

The primary goal of the application is to offer users a reliable tool for predicting stock market

movements and providing tips and results by showing the analysis, especially for users who are new to

the stock market. The application's intuitive and user-friendly interface allows users to invest in our

fake currency, get real-time tips, and become familiar with the stock market.

Additionally, Stock Vision has algorithms that analyze stock graph patterns and provide

real-time tips for the graphs. Analyzing stock values will be done with Machine Learning, and a wide

range of datasets of stock graph patterns will be used. Moreover, users' investments will be stored in

our database, and the user data will be analyzed. Some tips and results will be provided after these

analyses.

The application employs cutting-edge algorithms to capture complex patterns and correlations

within stock data. Users capture different patterns for different time range graphs, such as daily,

weekly, monthly, or annually. There are 9 fundamental patterns captured by our algorithms, such as

doubles, flag, head and shoulders, rectangle, rounding bottom, support and resistance, triangle, triples,

and wedge. After analyzing graphs and capturing complex patterns, a unique machine-learning

48



technique, ARIMA, is used to predict results and provide accurate and up-to-date tips. After

implementing LSTM, RNN, and Logistic Regression, ARIMA gave the most accurate results and was used

in the application. The accuracy of the predictions is further enhanced through integration with a wide

range of datasets, from a coin’s everyday results for the last ten years, enabling the application to

capture the predicted stock prices.

While implementing the project, there were some constraints that we encountered that could

be used and researched more in future work. First of all, in the stock market, there are lots of factors

that affect the prices of the coins. Our project would be more efficient if we could have made some

analysis, like browsing tweets about the coins or other related factors that could affect coin prices. We

primarily focused on only statistics and the current values of coins and ignored the social factors that

could affect stock prices. Secondly, there could be more automated users implemented into the

application with some characteristics (ignorant, risk taker, amateur, professional, etc.) so that the user

can observe how different characters might act in the stock market, and this could be a great example

for users as a guide.

9 Glossary

ETF: An exchange-traded fund is a mutual fund traded on stock exchanges. An ETF holds assets

such as stocks, commodities, or bonds and often works with an arbitrage mechanism designed

to keep diversions close to the net asset value.

Stock: A company's stock is all of the shares into which the company's ownership is divided. In

American English, shares are collectively known as "stocks". A single share of stock represents

partial ownership of the company in proportion to the total number of shares. This usually

deserves the shareholder.

Amateurs: The ones that are still learning the stock market

Flunks: The ones that are not good at the stock market

Currency System: The currency system that we will provide

49



References

1- Cryptocurrency trading simulator: Crypto Parrot. Cryptocurrency Trading Simulator | Crypto

Parrot. (n.d.). Retrieved March 13, 2023, from https://cryptoparrot.com/

2- Ltd., B. P. (2019, July 2). CryptoSim: Market simulator. App Store. Retrieved March 13, 2023,

from https://apps.apple.com/us/app/cryptosim-market-simulator/id1468838417

3- Google. (n.d.). Crypto master: Market analysis. Google Play'de Uygulamalar. Retrieved March

13, 2023, from

https://play.google.com/store/apps/details?id=com.astontek.crypto&hl=tr&gl=US

4- Cryptocurrency exchange for Bitcoin, Ethereum & Altcoins. Binance. (n.d.). Retrieved March

13, 2023, from https://www.binance.com/en

5- Cryptocurrency prices, Market Cap & Live Crypto charts | kraken. (n.d.). Retrieved March 12,

2023, from https://www.kraken.com/prices

6- Coinbase - buy and sell Bitcoin, Ethereum, and more with trust. (n.d.). Retrieved March 12,

2023, from https://www.coinbase.com/

50

https://cryptoparrot.com/
https://play.google.com/store/apps/details?id=com.astontek.crypto&hl=tr&gl=US

